

thev way ythey. e

Part 1: Language

Part 2: Paradigm

Part 3: Style

Part 1: Language

What languages
are the norm today?

[IANTA

Global developer
population report 2019

Active developers

117 M
8.2 M
[7.
Java Z6M
c+ TN 6.7 M

e, 3y

oy = som
I saM
B 21M
Ry EN18M

Kotlin Bram

JavaScript*

Python

Visual tools

Swift

Objectivec 16 M e
= G22018
FoMm Q42017

Lua
Q22017

Most popular in

Web, Cloud

Machine learning, loT apps
Mobile, Cloud

Desktop, AR/VR, Gaming
Desktop, loT, Gaming, AR/VR
Web, Cloud

AR/VR, Gaming

AR/VR, Mobile

Cloud, loT apps

AR/VR, Mobile

Mobile, AR/VR

Gaming, AR/VR

Least popular in
ML, loT devices
Mobile, Gaming, Web
loT devices, ML, Web
10T devices, Machine learning
Web, Mobile, Cloud
loT devices, ML
Cloud

Cloud

Mobile, loT devices
Cloud

Desktop, loT devices

Mobile

v [5.2 Total

ove I 7.6 M ,
. o 7 ¥ functional

o B programming

Swift -' 2.1M]_anguages:
Ruby .'1.8M

Kotlin ' 1.7M O

Objective C .1'6 b : 22’;”332

() JavaScript includes CoffeeScript, TypeScript ~ Global developer population report 2019 . https://sdata.me/GlobalDevPop19 - ©SlashData /JATA

How did they get popular?

1. Killer App
2. Platform Exclusivity

3. Quick Upgrade

1. Killer App

NO ONE

EEN HA

VERYWHERE:
HAVE BEEN HA

P> <HL2>
T AN TITAN-
I'M ANDI.

<He> You

0U HAVE BEEN HACKED.</P>

ASHLEY RICKARDS

SKYLER MAXON

JONNY REES

Software
$100

Hardware:
$10000

| FEBRUARY 1983 Vol. 8, NO. 2
J ® $2.95 in USA
$3.50 in Canada/£2.10 in U.K.

A McGraw-Hill Publication

the small systems journal

. Exclusive! Apple Lisa and lle Reviewed

“VisiCalc is the first program
available on a microcomputer
that has been responsible for
sales of entire systems.”

-BYTE magazine, 1980

the killer app for
L Ruby

* amm n
< s =
¢
m
\ S

ZRuby
e ' A rans

Jan1,2004 Jun1,2009 Nov 1,2014

the killer app for

making HTML dynamic

Jan1,2004

Php

ote

Jun1,2009

Nov1,2014

the killer app for

C

systems programming

Computer Science - Brian Kernighan on successful language design
- N B ' -

Potential FP Killer Apps

; Elm
O Clojure Datomic
M ReasonML revery

2.. Platform Exclusivity

Unit sales in millions

250

200

150

100

50

IPhone Sales

139

2007

11.63

2008

20.73

2009

2010

2011

2012

2013

2014

23022

2015

211.88

2016

216.76 | 217.72

2017

2018

JS

Total number of people using the Internet

Global total in 2016:

8408 bilon Sub-Saharan Africa
3 billion 206 milion in 2016
South Asia

468 million in 2016

Global total in 2010: East Asia & Paf
o ill ast Asia & Pacific
2 billion l s 1.992 billon 1217 milion in 2016

: Middle East & North Africa
Global total in 2005: [ol Alf e & Carlbpeen
1 bilion 1,026 bilkcg 362 millon in 2016
Global total in 2000: Eéggi;gll&ncrfgg 1(6‘ Asia
7 miiion |
Siobal total in 1990: Globaltotal in 1995: 4128 iy North America
2.6 milion 44.4 milion e 7 riicn in 2016
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 201 O 2011 2012 2013 2014 201 52016
before 1991, researchers J1 999, Ahbaba & Napster
at the European physics 1997, Google search 2007 iPhone
I?b gEFliN d?t\:eltoﬁl the 1996 ICQ released 2006, Twitter launched
e(t:hg Sv%% w?dea v\?\erS 1995, Internet Explorer & Apache server 2005, YouTube & Google Maps 2014, OurWorldInData.org online
' 1995, Ebay, Yahoo, & Amazon.com 2004, shift to Web 2.0; Facebook 2011, WeChat released
1994, Netscape web browser released 2003, Skype launched 2010, Instagram launched
1993, Mosaic web browser released __)2001, Wikipedia launched 2009, Whatsapp, Uber, Bitcoin and Blockchain
991 First web page published and first web browser released

2000 Baidu founded; Dot-com bubble bursts 2008 Github founded; Chrome web browser released

Licensed under CC-BY-SA by the author Max Roser.

Java

“Write once,
run anywhere.”

3. Quick Upgrade

. ‘}\E%%r" 5
v ‘\

Considerations s iust javascript’

Benefits <o

S 4

Familiarity CoffeeScript
Learning Curve

Ecosystem Access

Code Migration Effort

Considerations s iust javascript’

Benefits TypeScript

Familiarit ,
4 strict superset of]S

Learning Curve

Ecosystem Access

Code Migration Effort

Considerations

Benefits

Familiarit
4 near-superset of C

Learning Curve

Ecosystem Access

Code Migration Effort

Considerations

Benefits 7\ KOtIin

“Kotlin is 100% interoperable

F amlharlty with [Java] and major
. emphasis has been placed on
Le arning Curve making sure that your
existing codebase can
Fco system Access interact properly with Kotlin.”

Code Migration Effort

How did they get popular?

1. Killer App C, Ruby, PHP
2. Platform Exclusivity JS, Objective-C, Swift, C#

3. Quick Upgrade C++, Kotlin, TypeScript

How did they get popular?

1. Killer App C, Ruby, PHP
2. Platform Exclusivity JS, Objective-C, Swift, C#
3. Quick Upgrade C++, Kotlin, TypeScript

4. Epic Marketing Java

THE WALL STREET JOURNAL.

......................................

Home World US. Polit Economy Business Tech Markets Opinion Life&Arts Real Estate WSJ. Magazine

$500M Java marketing campaign in 2003

s, s,
— —

Java JavaScript

How did they get popular?

1. Killer App C, Ruby, PHP

2. Platform Exclusivity JS, Objective-C, Swift, C#
3. Quick Upgrade C++, Kotlin, TypeScript
4. Epic Marketing Java

5. Slow & Steady Python

@ python™
aRuby x?‘

Jan1,2004

Other Popularity Factors

Syntax
Job Market

Community

JavaScript* _ n7M
| — s M Why are the

oo T 76
. E— most popular

C/crs EEmmm— 6.3 M languages OO
pp — 5.9 M

Swift =l 21M (eXCe pt C)?
Ruby 18 M
Kotlin ' 1.7M

Objective C 1 1-6 M . gg ;—8113
]

(*) JavaScript includes CoffeeScript, TypeScript Global developer population report 2019 . https:/ Sdata.me/GIobaIDeVPop19 SlachData /JATA

Part 2: Paradigm

Programming paradigms are a way to
classify programming languages based on their features.
Languages can be classified into multiple paradigms.

Are OO languages the norm
because of uniquely OO features?

What are uniquely OO features?

1. Encapsulation?
2. Inheritance?
3. Objects?

4. Methods?

Inheritance

Interface Inheritance (aka subtyping)

Implementation Inheritance (aka inheritance)

“Composition over inheritance”

>

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gamma
Richard Hel

>
—
—
w
2
Y
z
=
=
m
w
<
)
bl
~
S
w
w
=
©)
Z
Z
=
-~
S
<
5
=
Z
A
w
2
m
w

.2
, , wlation:
“Supports an object-oriented style” encaP®

No inheritance

circle.grow(3)

“Objects and methods” are grow(circle, 3)

syntax sugar for structs and procedures

Modular Programming

Modularity lets you define a public interface
to hide private implementation details

ﬂl[l[lULH

—_—n7mMm

JavaScript*

il il Languages
ovo T 7.6 M

., — .7 M with modules
c/cr I 63 M *coming in C++20

ppp I 5.9 M
Swift . 2.1M

oy P 18M

Kotlin . 1.7M

B 1.6 M = Q42018

Objective C
m Q22018

(*) JavaScript includes CoffeeScript, TypeScript ~ Global developer population report 2019 . https://sdata.me/GlobalDevPopl9 - ©SlashData /JATA

Modular Programming

Modularity lets you define a public interface
to hide private implementation details

ﬂl[l[lULH

Encapsulation

Encapsulation lets you define a public interface
to hide private implementation details
about an object’s state

ﬂl[l[lULH

ﬁ
Q@
O
@

Classes
Inheritance
Garbage Collection

. John McCarthy,
Creator of Lisp

Objects
Classes

. Inheritance
bit.ly/2kgxVWO Garbage Collection

“Object-Oriented” -Alan Kay

OOP to me means only messaging, local
retention and protection and hiding of
state-process, and extreme late-binding of all
things. It can be done in Smalltalk and in LISP.
There are possibly other systems in which this is
possible, but I'm not aware of them.

i)

everything is an object

l

INKC(®IN —»

youtu.be/1xrl2d50omuA (Classes
Inheritance

Brad Cox Garbage Collection

“I wasn't happy with C as a productivity foundation, and I
was lobbying around for anything that could help. That
was about the time the Byte Magazine issue came out.”
“There were a whole bunch of things I thought vaguely
might help. Encapsulation for sure...C is so bad at it.
Everything is public; it just turns into soup.

The pain of that is what I was trying to escape.”
- l (4

UNIX

AUGUST 1979 * Volume 4, Number 8 $2.00 in USA/$2.40 in Canada

BUTE,

the small systems]()Ul nal

A MCGRAW-HILL PUBLICATION
-

Objects

Classes
Inheritance
Garbage Collection

= Program organization

® Mapping of concepts

= A class is a type
= Static checking

Bjarne Stroustrup

Classes youtu.be/69edOm889V4

Drop-in C Replacement (!)

% Allowed medium improve-
ments (only)

= User community couldn’t
support infrastructure

Bjarne Stroustrup

C
G

)
e
—

UN1x

C with OOP (“C with Classes”)
wasn’t sufficient for popularity

Sun wanted familiarity for
C++ programmers

Microsoft wanted a
proprietary Java alternative

C

[ObiC]

UNix

Brad Cox wanted
modularity

Apple wanted to
improve on ObjC

@ python’

“I wanted a scripting language that
was more powerful than Perl, and
more object-oriented than Python.”
—Yukihiro “Matz” Matsumoto,

creator of Ruby

@ python’

ARG

the the
Jan 1, 2004 Jun1,2009 Nov 1,2014

ZRuby

Are OO languages the norm
because of uniquely OO features?

No.

They’re OO because modularity is a good idea,
and they originally got it from OO by chance.

: Style

Part 3

Functional Programming Style

No language features required

Languages differ in their support for this style

Why isn't FP style the norm?

Yol

~ Kotlin FAQ

Is Kotlin an object-oriented language or a functional one?

Kotlin has both object-oriented and functional constructs.

You can use it in both OO and FP styles, or mix elements of the two.

swift.org

Some additional features of Swift include:

Functional programming patterns, e.g., map and filter

Introducing Functional Programming with Underscores

Functional
JavaScript

ords

O'REILLY* Foreword

Functional Programming
in JavaScript

Luis Atencio

Functional Programming in

How toimprove your JavaScript programs using functional techniques

Ved Antani, Simon Timms,
Dan Mantyla

JavaScript:

Functional Programming
for JavaScript Developers

Learning Path

Leverage the power of functional programming with
modern JavaScript techniques to build faster and
refiable web applications

nn

Packt>

Functional Programming

o

Kyle Simpson

=

Functional-Light
JavaScript

Balanced, Pragmatic FP in JavaScript

=+
Beginning

Functional
JavaScript

Apress*

JavaScript
Functional
Programming

In-depth guide for writing robust and maintainable Javascript code.
in ES8 and beyond

The .
Pm}%‘_matlc
‘ogrammers

Functional Programming
11 Java

Harnessing the Power of
Java 8 Lambda Expressions

Learning

Java 9 - Functional

L\ ‘. Functional Java Programming
X A Cuside 1 . ‘
FunCtional | Create robust and maintainable Java
Programming Pevietons ok e i o
Jor Java Developers
OREILLY* Dean Wanpier KCKMAIORANK (T]

-

Venkat Subramaniam
Edited by Jacquelyn Carter

livelessons®

Functional
Programming
For Java

s

y OJAIA ¥

Functional
Programming
with Java

Functional Programming in

simplify tasks in Java usin
Programming

Pierre-Yves Saumont

Simon Roberts %

Vile[=Ye

SREIF Functional
Functional '

. - B = p thon
Programming [l Functional Functional Pytﬁa[hz pi'ogramming

in Python Programming Programming 4‘ S

.

-4 > Discoe the powsrof factional rocrameming. genra o unctions,
<1, lazy evaluation, the built-in itertools library, a
> .

in Python P

|

Monads. Lazy evaluation, Generator functions, and more

David Mertz

B REPORT | V

Sebastiaan Mathot

: i : Functional
Functional ; Functional pEsHiE T e s

Pyt hon " f ProFgl:grcnu;gir:\aé Prog ramming Python
Programming with Python in Python

Create succinct and expressive implementations with Learn .everythmg ther.e |5.t0 know about
Functional Programming'in Python

functional programming in Python _
VIDEQTRANRG

an Packt:) o

P —

Wisnu Anggoro

Functional Functional
Programming Programming

Learning with C++ with e+

C++F ti !
u n C ' o n a An effective guide to writing accelerated functional code

Functional Programming in

C++17 and C++20

.
Programmin
C++ programs using

functional techniques

like currying,

Ivan Cukié

a LT - Packt>
Packt> z : s

OO style hybrid > FP style

N
2w
s
e
T esm

o
B 21 M

' 1.8 M
' 1.7M
.1.6 M

.v .v .v .v .v .v .v .v .v .v

F

“Wouldn'’t it be nice if my
language had strong
support for the style
that’s become the norm?”

() JavaScript includes CoffeeScript, TypeScript ~ Global developer population report 2019 . nttps://sdata.me/GlobalDevPop19 - ©SlashData /JATA

Part 1: Language

Part 2: Paradigm

Part 3: Style

Why aren’t FP languages the norm?

1. No sufficiently large “killer apps”

2. No exclusivity on large platforms

3. Can't be a quick upgrade if substantially different
4. No epic marketing budgets

5. Slow & steady growth takes decades

Are OO languages the norm
because of uniquely OO features?

1. Information hiding (encapsulation) is not
a uniquely OO feature. Modules can do it too.

2. Inheritance is uniquely OO, but OO best practice
encourages using composition instead.

3. Without inheritance, objects and methods are not
significantly different from structs and procedures.

Why isn’t FP style the norm?

Yol

@rtfeldman

