@?\}
N

i
o

My long path towards
O(n) longest-path in 2-trees

JORDAN BISERKOV

ClojuTRE
Helsinki, Finland
September 14th 2018

Jordan Biserkov
» Programming professionally since 2001
» Found Lisp in 2005 via pg essays & books

» Found Clojure on HN In 2010, fell in love

> Independent contractor for Cognitect since 2018

> Biserkov.com

My epic journey in the 2-trees forests
» End goal: implement the Big O(n) boss
> but first O(k) bosses In the Bottom-level

* First use of my superpower

> The O(nVn) boss

« Side quest: Find 5 bugs in a 3" party library
* The ancient Structural tree

» The O(n log n) boss

» A wild stack overflow appears

> The final fight

2-trees are NOT ...
> Binary trees

> Even trees
2-trees are ...

> A class of undirected graphs
» Used to model electric circuits

> Recursively structured

2-tree recursive construction demo

2-tree recursive construction demo

2-tree recursive construction demo

2-tree recursive construction demo

o 0
T

2-tree recursive construction demo

o
T~y

2-tree recursive construction demo

o
T~y

2-tree recursive construction demo

o

2-tree recursive construction demo

2-tree recursive construction demo

2-tree recursive construction demo

10 6 7

Background

» The 90’s algorithm to compute the length of the
longest path in a 2-tree has colossal hidden
constants and is “linear” in purely abstract sense
* Never implemented

> In 2013 Markov, Vassilev and Manev published a
novel algorithm

» Implemented as pseudo-code in the paper

» Goal: Implement the MVM algorithm in O(n) time

Overview

> Recursively split the 2-tree into sub-2-trees

* Only a few nodes change

» Boundary cond.: Leaf edges, label [1 1 000 0 O]

»> Combine labels of subtrees to compute parent tree
label

» The first element of the label is the result — the
length of the longest-path

Code structure

Top level

* Compute-label

Middle level

* Combine-on-face
* Combine-on-edge

Bottom level — helper functions

* max-2-distinct
* max-3-distinct

a and b are vectors with k elements each
max{ai +bj |1 #]}

(defn naive-max2DistinctFolios [a b n]
(reduce max
(for [1 (range 0 k)
j (range 0 k)
:when (not= i j)]
(+ (nth a i) (nth b j)))))

Problem: 2 Nested for-loops — O(k?) runtime
a=[12345], b=1[6789 10]

8 9 10 11
8 10 11 12
9 10 12 13
10 11 12 14

1T 12 13 14

Optimization: O(k)

> Iterate each vector separately, keeping track of:

* the maximum
* the second largest
* the index of the maximum

» Check whether we can use both maxima (different
Indices) and if not - which alternative is larger

(max (+ maxA secondB)
(+ maxB secondAh))

a, b and c are vectors with k elements

max{ai+bj+ct|i +J Ft ;éi}

Problem: 3 Nested for-loops — O(k3) runtime

Optimization: O(k)

> Iterate each vector separately, keeping track of:

* the maximum

* the second largest

* the third largest

* the index of the maximum and the second largerst

» Check which of the 36 combos are valid and which
sum iIs the largest

> Terrible complexity, many bugs

Generative

> Also called

testing to the rescue

property-based testing

> FInds com

nlex bugs immediately

> Difficult to come up with a useful property

» Shrinks input to minimal case which triggers the
bug, In this case often vectors with 0 and 1

> Use (= (
(

naive ...)

faster ..)) astesting property

Previous implementation
> Java
> 2-tree represented as a matrix
» Sub-2-tree = submatrix = tons of copying
» O(n?) runtime

» O(n%) memory usage

My first implementation
> Clojure
> as close to the paper as possible
> 2-tree represented as map from int to set of int
> O(nVn) runtime

> Perhaps Clojure’s dynamic typing is the problem?

Optimization: use Zach Tellman’s
int-map and int-set

{0 #{1 2 3 4}

/o © 1#{e2)
0\ 2 #{0 1 3 4}
\\ / 3 #{0 2)

@ © 4 #{0 2}}

Runtime is faster, but complexity still O(nVn)

Sidequest: find 5 bugs in 3™-party library
> The problem manifests as a NullPointerException

> Cursive’s debugger is awesome

» Breakpoint on exception

» Zach Tellman is a great guy, fixed bug quickly

» Problem has evolved: infinite looping in subgraph-
walk during multiple-recursion?!? How? Why?

» 5 times In a row, same-day bug delivery, what
sorcery Is this?

The root cause of the slowdown?
> Splitting into sub-2-trees

> Persistent data structure are fast enough,
actual updates not the problem

» Computing which vertices need updating is the
problem

> The authors told me to seek the ancient Structural
tree

Representation: map from edge to [vertices]
1] [2]

uvui VN R =R OO O®
A Ul U1 NN
(00
O
—

Blue nodes represented implicitly: parent edge + vertex
External edge nodes represented implicitly as nil

My second implementation
> Iterative preprocessing step: builds structural tree
> Recursive part operates on structural tree
» O(n log n) runtime
» More complex, unexplored territory
> Generative testing saves the day again

> Best of both implementations

« Straightforward and correct, but slow one
« Complex and unproven, but faster one

Suddenly wild stack overflow appears
> But how?
> Infinite recursion?
> Another bug?
> No, all tests pass. What?

> A genuine stack overflow due to one benchmark
using ultra-tall 2-trees

Workaround?

> Increase the call stack size via JVM options, but the problem
reappears when you double N a few times

Solution: Every recursive algorithm can be made iterative,
by using an explicit stack parameter, instead of the call stack

Then it hit me — there Is a data structure in my program that
holds all the information it needs — the EdgesVerticies map.

With some modifications the recursive calls can be removed
completely and all the work can be done during the
preprocessing (bottom-up) phase

My third implementation
> Iterative, dynamic programming, no recursive part
» O(n) runtime!!
> Millions of vertices without overflow
» Map from edge to vector of labels

> Generative testing saves the day yet again

180

The result
160
140
—-Projected O(n logn) 120
Projected O(n) < 100
Actual time § 80
60
40
Benchmarks
» » . 20
via Criterium by)l
Hugo Duncan OE+0 1E+6 2E+6 3E+6 4E+6 5E+6 6E+6 7E+6

Number of vertices

Implementations recap

Type Direction |Data structure Complexity
Java Recursive | € F |Matrix 0(n%)
Direct Recursive | € F |int-map, int-set 0 (n\/n)
Iterative Vi int-map, int-set
Indirect O(nlogn)

Recursive | £ Vi EdgeVertices map

: : Int-map, int-set
Dynamic |lterative V4 > O(n)

Edgelabels map

Transient variants of persistent data structures

> If the original value is never used after modification,
it's safe to modify it in place, while still presenting an
iImmutable interface to the outside world

> Add complexity, so make your program work without
them, then add:

«acallto transient in the beginning
* ! to assoc, dissoc, conj and friends
 acallto persistent! atthe end

Further optimization of middle level functions

> Higher level decision making — 2 simpler, faster
functions instead of 1 complex, mathematically pure

> Proper case simplified greatly, removed branching

> Degenerate cases handled by specialized variant

« Simplified greatly, removed branching
* When a = 1 the expression (+ a b) becomes (inc b)
 When ¢ = 0 the expression (max c d) becomes d

> Frequent trivial case handled directly
* No function call cost, no unnecessary computation

Memoization

> The function remembers the result for given
parameters to avoid costly recomputation

» Useful whenever a big problem is divided into
smaller ones

> The built-in memoi ze returns a variable argument
function, which adds overhead.

> If we know the number of arguments, we can build
our own version which is simpler and faster

Resources

> The algorithm
https://sites.google.com/site/minkommarkov/longest-
2-tree--draft.pdf

> My implementations
https://github.com/Biserkov/twotree-longest-path

» Understanding Clojure’s transients
http://www.hypirion.com/musings/understanding-
clojure-transients

https://sites.google.com/site/minkommarkov/longest-2-tree--draft.pdf
https://github.com/Biserkov/twotree-longest-path
http://www.hypirion.com/musings/understanding-clojure-transients

Thank you!
Questions?

