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Jordan Biserkov

➢Programming professionally since 2001

➢Found Lisp in 2005 via pg essays & books

➢Found Clojure on HN in 2010, fell in love

➢ Independent contractor for Cognitect since 2018

➢Biserkov.com



My epic journey in the 2-trees forests

➢End goal: implement the Big O(n) boss

➢ but first O(k) bosses in the Bottom-level

• First use of my superpower

➢The O(n√n) boss

• Side quest: Find 5 bugs in a 3rd party library

• The ancient Structural tree

➢The O(n log n) boss

• A wild stack overflow appears 

➢The final fight



2-trees are NOT …

➢Binary trees

➢Even trees

2-trees are …

➢A class of undirected graphs

➢Used to model electric circuits

➢Recursively structured
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Background

➢The 90’s algorithm to compute the length of the 

longest path in a 2-tree has colossal hidden 

constants and is “linear” in purely abstract sense

• Never implemented

➢ In 2013 Markov, Vassilev and Manev published a 

novel algorithm

• Implemented as pseudo-code in the paper

➢Goal: Implement the MVM algorithm in O(n) time



Overview

➢Recursively split the 2-tree into sub-2-trees

• Only a few nodes change

• Perfect fit for Clojure’s persistent data structures

➢Boundary cond.: Leaf edges, label [1 1 0 0 0 0 0]

➢Combine labels of subtrees to compute parent tree 

label

➢The first element of the label is the result – the 

length of the longest-path



Code structure

Top level

• Compute-label

Middle level

• Combine-on-face

• Combine-on-edge

Bottom level – helper functions

• max-2-distinct

• max-3-distinct



𝑚𝑎𝑥 𝑎𝑖 + 𝑏𝑗 | 𝑖 ≠ 𝑗

(defn naive-max2DistinctFolios [a b n]
(reduce max 

(for [i (range 0 k)
j (range 0 k)
:when (not= i j)]

(+ (nth a i) (nth b j)))))

a and b are vectors with k elements each



Problem: 2 Nested for-loops → O(k2) runtime

a = [1 2 3 4 5],  b = [6 7 8 9 10]

+ 1 2 3 4 5

6 8 9 10 11

7 8 10 11 12

8 9 10 12 13

9 10 11 12 14

10 11 12 13 14



Optimization: O(k)

➢ Iterate each vector separately, keeping track of:

• the maximum

• the second largest

• the index of the maximum 

➢Check whether we can use both maxima (different 

indices) and if not - which alternative is larger

(max (+ maxA secondB)

(+ maxB secondA))



𝑚𝑎𝑥 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑡 | 𝑖 ≠ 𝑗 ≠ 𝑡 ≠ 𝑖

a, b and c are vectors with k elements



Problem: 3 Nested for-loops → O(k3) runtime



Optimization: O(k)

➢ Iterate each vector separately, keeping track of:

• the maximum

• the second largest

• the third largest

• the index of the maximum and the second largerst

➢Check which of the 36 combos are valid and which 

sum is the largest

➢Terrible complexity, many bugs



Generative testing to the rescue

➢Also called property-based testing

➢Finds complex bugs immediately

➢Difficult to come up with a useful property

➢Shrinks input to minimal case which triggers the 

bug, in this case often vectors with 0 and 1

➢Use (= (naïve …) 

(faster …)) as testing property



Previous implementation

➢ Java

➢ 2-tree represented as a matrix

➢Sub-2-tree = submatrix = tons of copying

➢O(n2) runtime

➢O(n2) memory usage



My first implementation

➢Clojure

➢ as close to the paper as possible

➢ 2-tree represented as map from int to set of int

➢O(n√n) runtime

➢Perhaps Clojure’s dynamic typing is the problem?



Optimization: use Zach Tellman’s
int-map and int-set

{0 #{1 2 3 4}

1 #{0 2} 

2 #{0 1 3 4}

3 #{0 2}

4 #{0 2}}

Runtime is faster, but complexity still O(n√n) 



Sidequest: find 5 bugs in 3rd-party library

➢The problem manifests as a NullPointerException

➢Cursive’s debugger is awesome

• Breakpoint on exception

➢Zach Tellman is a great guy, fixed bug quickly

➢Problem has evolved: infinite looping in subgraph-

walk during multiple-recursion?!? How? Why?

➢ 5 times in a row, same-day bug delivery, what 

sorcery is this?



The root cause of the slowdown? 

➢Splitting into sub-2-trees

➢Persistent data structure are fast enough, 

actual updates not the problem

➢Computing which vertices need updating is the 

problem

➢The authors told me to seek the ancient Structural 

tree





Representation: map from edge to [vertices]

{[0 1] [2]

[0 2] [3 4 10]

[1 2] [5]

[1 5] [8 9]

[2 5] [6]

[5 6] [7]}

External edge nodes represented implicitly as nil

Blue nodes represented implicitly: parent edge + vertex



My second implementation

➢ Iterative preprocessing step: builds structural tree

➢Recursive part operates on structural tree

➢O(n log n) runtime

➢More complex, unexplored territory

➢Generative testing saves the day again

➢Best of both implementations

• Straightforward and correct, but slow one

• Complex and unproven, but faster one



Suddenly wild stack overflow appears

➢But how? 

➢ Infinite recursion?

➢Another bug?

➢No, all tests pass. What?

➢A genuine stack overflow due to one benchmark 

using ultra-tall 2-trees



Workaround?

➢ Increase the call stack size via JVM options, but the problem 

reappears when you double N a few times

Solution: Every recursive algorithm can be made iterative, 

by using an explicit stack parameter, instead of the call stack

Then it hit me – there is a data structure in my program that 

holds all the information it needs – the EdgesVerticies map. 

With some modifications the recursive calls can be removed 

completely and all the work can be done during the 

preprocessing (bottom-up) phase



My third implementation

➢ Iterative, dynamic programming, no recursive part

➢O(n) runtime!!

➢Millions of vertices without overflow

➢Map from edge to vector of labels

➢Generative testing saves the day yet again
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Implementations recap

Type Direction Data structure Complexity

Java Recursive Matrix 𝑂(𝑛2)

Direct Recursive int-map, int-set 𝑂(𝑛 𝑛)

Indirect
Iterative int-map, int-set

𝑂 𝑛 𝑙𝑜𝑔 𝑛
Recursive EdgeVertices map

Dynamic Iterative
int-map, int-set

EdgeLabels map
𝑂(𝑛)



Transient variants of persistent data structures

➢ If the original value is never used after modification, 

it’s safe to modify it in place, while still presenting an 

immutable interface to the outside world

➢Add complexity, so make your program work without 

them, then add:

• a call to transient in the beginning

• ! to assoc, dissoc, conj and friends 

• a call to persistent! at the end



Further optimization of middle level functions

➢Higher level decision making – 2 simpler, faster 

functions instead of 1 complex, mathematically pure

➢Proper case simplified greatly, removed branching

➢Degenerate cases handled by specialized variant

• Simplified greatly, removed branching

• When a = 1 the expression (+ a b) becomes (inc b)

• When c = 0 the expression (max c d) becomes d

➢Frequent trivial case handled directly

• No function call cost, no unnecessary computation



Memoization

➢The function remembers the result for given 

parameters to avoid costly recomputation

➢Useful whenever a big problem is divided into 

smaller ones

➢The built-in memoize returns a variable argument 

function, which adds overhead.

➢ If we know the number of arguments, we can build 

our own version which is simpler and faster



Resources

➢The algorithm

https://sites.google.com/site/minkommarkov/longest-

2-tree--draft.pdf

➢My implementations

https://github.com/Biserkov/twotree-longest-path

➢Understanding Clojure’s transients 

http://www.hypirion.com/musings/understanding-

clojure-transients

https://sites.google.com/site/minkommarkov/longest-2-tree--draft.pdf
https://github.com/Biserkov/twotree-longest-path
http://www.hypirion.com/musings/understanding-clojure-transients


Thank you!
Questions?


