
The Other Data Structures
@jonasenlund

About me
• Live 250km northwest of here

• Work for a Non-Profit organization
called Akvo

• Mobile phone based field surveys

• Used in post-Earthquake Nepal and
post-“Cyclone Pam” in Vanuatu for
damage assessment

• Water point mapping and monitoring
in Africa, India, Indonesia etc.

• Some Clojure(Script) and lots of
Java(script)

Agenda
• Persistent Data Structures!

• Many interesting (non-core) data structures available:

• priority-maps, ctries, int-maps/sets, etc.

• Focus on core.rrb-vector and data.avl

• Contrib libraries

• Available for Clojure and ClojureScript

• Both implementations by Michał Marczyk

core.rrb-vector

• Based on the paper “RRB-Trees: Efficient
Immutable Vectors” by Bagwell & Rompf

• Similar to built in Clojure vectors with two key
additions

6 12

(rrb/subvec coll 6 12)

“True” subvector

(rrb/catvec coll-a coll-b)

Concatenation

core.rrb-vector

• Both operations work on existing Clojure(script)
vectors at O(log(n)) complexity.

• But:

• Iteration (especially via ‘reduce’) will be slower.

• Not as battle tested

Usage
• Brandon Bloom’s fipp uses rrb-vectors as a

double-ended queue. 
 
 
 
 

• Using Clojure’s Persistent Vector would make
conjlr O(n) instead of O(log(n)).

Clojure Cup 2014

• Idea: Analyze git diffs (@@ -s1,c1 +s2,c2 @@)
to track line-by-line file changes

• Parse these “hunks” into :insert, :edit
and :delete operations.

• Keep a vector of “line edit counts”

(cut coll 4 5)

5

4

5

(split-at coll 5)

6

(splice coll-a 6 coll-b)

core.rrb-vector

• Consider using core.rrb-vector when you need
these operations

• For small vectors or one-off concats/subvecs
there’s probably no win

• Evaluate on a case-by-case basis

data.avl

data.avl use cases

• Datomic pagination:

1. Query result => data.avl sorted set

2. Thanks to lazy entities you only need to
realise the attribute you sort on

3. Use rank-queries for page results.

Use cases (2)
• Windowed event data keyed by timestamp

1. Keep “events” in a sorted set (by
timestamp)

2. Periodically reduce the set using rank
queries

3. Since the subrange result is itself a sorted
set there’s never a need for a O(n)
operation.

“Data dominates. If you've chosen
the right data structures and
organized things well, the algorithms
will almost always be self-evident …”

– Rob Pike

“… Data structures, not algorithms,
are central to programming.”

